Induction of p27(KIP1) as a mechanism underlying NS398-induced growth inhibition in human lung cancer cells.

نویسندگان

  • W C Hung
  • H C Chang
  • M R Pan
  • T H Lee
  • L Y Chuang
چکیده

Increased expression of cyclooxygenase-2 (COX-2) causes enhanced production of prostaglandins, which are emerging as important mediators of growth stimulation of cancer cells. Overexpression of COX-2 has been found in human non-small cell lung cancer tissues and cell lines. In vitro and in vivo studies showed that nonselective cyclooxygenase inhibitors (like aspirin and indomethacin) may suppress growth of lung cancer cells and may prevent lung tumorigenesis induced by the tobacco-specific carcinogens. However, the molecular mechanisms that mediated the anticancer action of these inhibitors are not well defined. In this study, we examined the effect of a specific COX-2 inhibitor, N-(2-cyclohexyloxy-4-nitrophenyl)methanesulfonamide (NS398), on high COX-2-expressing A549 lung cancer cells. Our results indicated that NS398 inhibited prostaglandin E(2) synthesis and induced G(1) growth arrest in these cells. NS398 specifically up-regulated cyclin-dependent kinase inhibitor p27(KIP1), whereas the expressions of G(1)-acting cyclins and cyclin-dependent kinases were not changed. Additionally, NS398 effectively suppressed cyclin E-associated kinase activity in A549 cells. The molecular mechanism responsible for the induction of p27(KIP1) by NS398 was characterized. We found that NS398 did not induce p27(KIP1) through transcriptional activation because this drug could not stimulate the p27(KIP1) promoter. Metabolic labeling experiments showed that the synthesis rate of p27(KIP1) protein was not altered by NS398. Conversely, pulse-chase assays demonstrated that degradation of p27(KIP1) protein was obviously reduced in NS398-treated cells. We conclude that NS398 enhances p27(KIP1) expression via post-translational regulation, and our results provide a new mechanism by which specific COX-2 inhibitors suppress proliferation of cancer cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms underlying nonsteroidal anti-inflammatory drug-induced p27(Kip1) expression.

We demonstrated previously that nonsteroidal anti-inflammatory drugs (NSAIDs) increased p27(Kip1) by inhibiting protein degradation to suppress the proliferation of human lung cancer cells. In this study, we elucidate the molecular mechanism by which NSAIDs modulate p27(Kip1) proteolysis. Immunoblotting and in vitro ubiquitination assays indicated that the expression of Cul1 and Skp2 and ubiqui...

متن کامل

Vitamin E δ-Tocotrienol Induces p27Kip1-Dependent Cell-Cycle Arrest in Pancreatic Cancer Cells via an E2F-1-Dependent Mechanism

Vitamin E δ-tocotrienol has been shown to have antitumor activity, but the precise molecular mechanism by which it inhibits the proliferation of cancer cells remains unclear. Here, we demonstrated that δ-tocotrienol exerted significant cell growth inhibition pancreatic ductal cancer (PDCA) cells without affecting normal human pancreatic ductal epithelial cell growth. We also showed that δ-tocot...

متن کامل

Reduced E-cadherin expression contributes to the loss of p27kip1-mediated mechanism of contact inhibition in thyroid anaplastic carcinomas.

In the present study, we have characterized several human thyroid cancer cell lines of different histotypes for their responsiveness to contact inhibition. We found that cells derived from differentiated carcinoma (TPC-1, WRO) arrest in G(1) phase at confluence, whereas cells derived from anaplastic carcinoma (ARO, FRO and FB1) continue to grow after reaching confluence. Furthermore, we provide...

متن کامل

Cyclin D1 induction of cellular migration requires p27(KIP1).

The cyclin D1 gene is amplified and overexpressed in human breast cancer, functioning as a collaborative oncogene. As the regulatory subunit of a holoenzyme phosphorylating Rb, cyclin D1 promotes cell cycle progression and a noncatalytic function has been described to sequester the cyclin-dependent kinase inhibitor protein p27. Cyclin D1 overexpression correlates with tumor metastasis and cycli...

متن کامل

Molecular mechanisms underlying IGF-I-induced attenuation of the growth-inhibitory activity of trastuzumab (Herceptin) on SKBR3 breast cancer cells.

The clinical usefulness of trastuzumab (Herceptin; Genentech, San Francisco, CA) in breast cancer treatment is limited by the rapid development of resistance. We previously reported that IGF-I signaling confers resistance to the growth-inhibitory actions of trastuzumab in a model system, but the underlying molecular mechanism remains unknown. We used SKBR3/neo cells (expressing few IGF-I recept...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmacology

دوره 58 6  شماره 

صفحات  -

تاریخ انتشار 2000